Cardiovascular Diseases (CVDs) Fact Sheet

European Diagnostic Manufacturers Association

In Vitro Diagnostics
Making a real difference in Health & Life Quality

May 2007
I. The different types of CVDs

1. Cardiovascular Risk Factors
 - type 2 diabetes mellitus
 - hypertension
 - smoking
 - abdominal obesity
 - hypercholesterinaemia
 - elevated triglycerides
 - inflammatory diseases (e.g. rheumatoid arthritis)
 - low high-density lipoprotein-cholesterol

2. Coronary Artery Disease (CAD)
 syn. Coronary Heart Disease (CHD)
 - stable CAD (CHD)
 - unstable CAD (CHD)

3. Acute Coronary Syndrome (ACS)
 Unstable Angina Pectoris (uAP)
 Acute Myocardial Infarction (AMI)
 - STEMI (ST-Elevation Myocardial Infarction)
 - NSTEMI (Non ST-Elevation Myocardial Infarction)

4. Heart Failure (Chronic Heart Failure, Acute Heart Failure)
 - Dilatative cardiomyopathy
 - Ischemic cardiomyopathy
 - Non-ischemic cardiomyopathy
 - Right heart failure (in connection with pulmonary diseases e.g. lung embolism, Chronic Obstructive Pulmonary Disease (COPD), primary pulmonary hypertension
 - Myocarditis (infection disease of the heart with heart failure like symptoms)

5. Rheumatic Heart Diseases, Congenital Heart Diseases
 - Valvular disorders

6. Cerebrovascular Disease
 - Stroke (ischemic, haemorrhagic)

7. Peripheral Artery Disease
II. Epidemiology

Cardiovascular Diseases: a major health problem worldwide

- Coronary Artery Disease (CAD) and cardiovascular adverse events (Acute Coronary Syndrome (ACS)) are the leading cause of mortality in men over 45 years old and in women over 65 years throughout Europe.
- In Europe CAD and ACS are the leading causes of death accounting for over 4 million deaths each year. An estimate 17 million people die from cardiovascular diseases each year. In the world cardiovascular diseases are cause for about one-third of all deaths globally.
- By 2010 CVD is estimated to be the leading cause of death also in developing countries.
- By 2020 incidence of CVD will increase to more than 20 million a year and to more than 24 million a year by 2030.
- Heart diseases have no geographic, gender or socio-economic boundaries.
- Every 33 seconds an American dies from a cardiovascular disease.

Cardiovascular Diseases: a real economic burden

- Medical treatment and care is highly cost intensive and prolonged.
- 2005: USA – total costs for treatment of cardiovascular diseases are estimated to be $393.5 billions.

Europe:

- 2005: total costs for treatment of cardiovascular diseases are estimated to be €200 billions.
- These amount represents 12% of total health care expenditure (12% in France, 15% in Germany, 17% in UK) €230 per head.
- Cardiovascular diseases severely hampered the daily activities of 4.4 million people – one in every 100 EU citizens.
- Medical treatment of CVD represent 126 million hospital-bed days and 268.5 million lost working days.
- CVD affects individuals in their peak mid life years in their most productive years.
- 2 Million cardiac deaths from CDV in 2003 represented a lost of 2.18 million working years.
III. Commonly used Routine Laboratory Tests

1. **Laboratory detection of cardiovascular risk factors**
 - Triglycerides
 - Total Cholesterol
 - LDL- and HDL Cholesterol
 - Homocysteine
 - Microalbuminuria
 - Fibrinogen
 - CRP/hsCRP

2. **Laboratory diagnosis of coronary artery disease (CAD)**
 - Acute coronary syndrome (ACS) and myocardial infarction (MI):
 - Troponin T and I
 - Creatinkinase CK
 - Creatinkinase isoenzyme CK-MB
 - Myoglobin
 - In symptomatic patients with chest pain presenting in the emergency department laboratory testing troponin T or I is beside ECG the gold standard for diagnosing non ST elevation myocardial infarction (NSTEMI)

3. **Laboratory diagnosis of structural heart disease, heart failure, rheumatic and congenital heart diseases**
 - Natriuretic peptides: NT-proBNP and BNP

Cardiovascular Biomarkers
Providing actionable health information

- Predisposition screening
- Targeted screening
- Diagnosis
- Prognosis
- Treatment stratification
- Treatment/ recurrence monitoring

- Prevention
- Early Diagnosis
- Differential Diagnosis, further Dx
- Management strategy
- Differential treatment
- Treatment adjustment/ optimisation

- Community based screening
- Structural Heart Disease in asymptomatic patients
- Patients with acute chest and acute dyspnea
- Patients with LVD
- Carvedilol Diuretics ACE-Inh Digoxin
- Treatment optimisation
IV. Heart Failure: Epidemiology & Healthcare Cost

Heart failure is a fatal disease:

- Between 25 and 50% of patients presenting with decompensated heart failure are initially misdiagnosed. 6
- Heart Failure (HF) is a major health care problem and affects 14 million Europeans (prevalence ~ 2%-2.5 %). 7
- Lifetime risk of developing HF is 20%. In individuals aged 55, almost 1 in 3 will develop heart failure during their remaining lifespan. 8
- Prevalence of heart failure increases rapidly with age. As the proportion of elderly population increases, the number of individuals with HF also increases. 9
- Heart failure is an insidiously progressive disease and is characterized by an increasing frequency of hospitalizations. 10
- Survival rate after incident heart failure is 63% after one year and only 35% at 5 years of follow-up. 11
- Heart failure is currently the most costly cardiovascular disorder in Western countries. 6
- Large number and long duration of hospitalization associated with acute heart failure and decompensated congestive heart failure create a substantial economic burden on the healthcare system, consuming 2-2.5% of the total healthcare budget. 9, 12
- Safe and effective decompensated heart failure diagnosis and management has the potential to decrease hospitalizations and intensive care unit admissions, prevent readmissions, and improve the quality of life in the heart failure patient, as well as relieve some of the economic burden of HF management from the healthcare system. 13
- Consuming 2-2.5% of the total healthcare budget – the cost increase with disease progression towards more severe stages.
III. Commonly used Routine Laboratory Tests

In asymptomatic patients with structural heart disease laboratory testing provide early diagnosis before clinical symptoms occur:

- Allow a powerful prognosis in asymptomatic at-risk populations
- Limit or delay the manifestation of disease by detecting risk factors (Cholesterol, thrombogenetics factors, homocysteine, infectious markers, cardiac markers, genetic factors…)
- Rise diagnosis and with appropriate treatment limit or delay the progression of heart disease
- Reduce the time to the initiation of the most appropriate therapy and improve prognosis
- Prevent recurrence, complications, disability and mortality from cardiovascular diseases
- Prolong survival and improve quality of life Increase (disease-free) life expectancy
- Lead significant cost savings for healthcare systems

The utility of laboratory diagnostics spans the continuum of care from early detection to health outcomes:

<table>
<thead>
<tr>
<th>At least one available Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific diagnostic used to rule in specific disease or condition</td>
</tr>
<tr>
<td>Specific diagnostic used to rule out specific disease or condition</td>
</tr>
<tr>
<td>Diagnostic recommended for establishing diagnosis by evidence-based clinical practice guidelines</td>
</tr>
<tr>
<td>Diagnostic recommended for patient care or disease management by evidence based clinical practice guidelines</td>
</tr>
</tbody>
</table>

And then... A recent study conducted by Rand Corporation reported that diagnostics are underused on average 51% of the time…
V. Coronary Artery Disease & Acute Coronary Syndrome

In symptomatic patients with chest pain presenting in the emergency department, laboratory testing troponin T or I is beside ECG the gold standard for diagnosing non-ST elevation myocardial infarction (NSTEMI).

- Treatments are available
- Angina a common sign of heart attack accounts for approximately 5.6 million emergency departments visits annually
- The cost of unnecessary hospital admissions for chest pain is estimated to exceed $12 billion annually
- Some 2-10% of individual experiencing acute myocardial infection mistakenly are send home due to incorrect diagnose increasing risk for sudden death or heart damage due to treatment delay (→ legal consequences..) 15

VI. Cardiac Markers in the Management of Heart Failure

NT-proBNP and BNP:
- diagnosis of heart failure in patient presenting with dyspnoea in the doctor’s office or with acute breathlessness in the emergency department
- monitoring and therapy guidance

Laboratory benefit
- easy -rapid measurement (less than 20 min) and reliable, available on standard lab equipment

Clinical benefit
- Improve the diagnosis accuracy Decrease the clinical uncertainty for 74%
- Help to grade the severity of heart failure
- High prognostic value: predicts an increased risk of recurrent events or death

Economic benefit
- Reduce the need to hospitalization in intensive care
- Reduce the total cost of treatment by 26%
- Reduce intensive care costs per patient: in the BNP group: 5 410 $ in the control group: 7 264 $

Patient satisfaction
- Reduce time to the initiation of the most appropriate therapy and reduce time to discharge
- Reduce the duration of hospitalization
- Less subsequent readmissions
- Improve quality of life
- Improve life expectancy

Cf. 16 - 24
VII. Cardiac Markers in the Management of Artery Disease and Acute Coronary Syndrome

Cardiac Troponin T or I

Clinical benefit
- High diagnostic accuracy and safety
- Gold standard in diagnosis of ACS
- Troponin patients without acute coronary syndromes had fewer hospital admissions
- Troponin patients with acute coronary syndromes had shorter telemetry and coronary care lengths of stay

Economic benefit
- Low cost method
- Total hospital charges were reduced in troponin patients with and without coronary syndromes compared to controls ($900 lower)

Patient satisfaction
- Improve disease management
- Improve quality of life (less days inpatient)
- Facilitating a well-planned discharge

Cf. 25-26

VIII. Cardiac Markers in Risk Stratification of Kidney Disease

Cardiovascular disease is the leading cause of death in patients with chronic renal failure accounting for 45% of all deaths.

In dialysis patients 20% of cardiac deaths are attributed to acute myocardial infarction (AMI). AMI is a fatal clinical event in end-stage renal disease patients with a 2-year mortality of 73%.

An elevated troponin is a poor prognostic factor and is associated with an increased risk of morbidity and mortality in patients with renal failure.

Torponin is a helpful marker to identify a high-risk group of patients with stable chronic kidney disease for more intensive therapeutic management.

Cf. 27-30
IX. Cardiac Markers and Chemotherapy of Cancer

CANCER is a disease which concerns us all:
- Cancer in USA is the second leading cause of death
- One of every four deaths is due to the cancer in the USA
- In Europe 1.2 millions of death/year
- USA overall annual cost of cancer would be in 2005 $ 209.9 billion
- In 2002 the cost of the cancer in France reached 15 billions of euros
- Almost one man on two and one woman on 3 will have a cancer in their life
- Cardiotoxicity is a common complication of chemotherapy

The commonly applied chemotherapy is associated with cardiotoxic side effects. These cardiotoxic effects could be detected already in the initial phase of chemotherapy by using cardiac markers (troponines or natriuretic peptides)

Pronostic value of troponin T and I evaluation in cardiac risk stratification of cancer patients undergoing high dose chemotherapy

Clinical benefit:
- Easy test and non invasive
- Stratify the risk of cardiac events in cancer patients in the 3 years after therapy
- Identify low risk patient who do not require close cardiac surveillance after chemotherapy
- Anticipate the development of cardiac dysfunction
- Stratifies cardiac risk in early phase, long before impairment of heart function and development of clinical symptoms

Economic benefit:
- Is a low cost method
- Avoid expensive long term monitoring program such as echocardiography, radionuclide angiocardiology by patients who do not need it
- start preventive therapy before impairment in heart function
- avoid expensive complications

Patient satisfaction:
- Improve disease management
- Improve quality of life
- Improve life expectancy

Cf. 31-32
List of References

Epidemiology

1. Screening of family members of patients with premature coronary heart disease. Results from the EUROASPIRE I family survey. European Heart Journal (2003) 24, 249-257
3. American heart association (www.americanheart.org)
4. British heart foundation (www.heartstats.org)

Heart Failure

Coronary Heart Disease and Acute Coronary Syndrome

List of References

Cardiac Markers in the Management of Heart Failure
20. Svendstrup-Nielsen L et al. N-terminal pro-brain natriuretic peptide for discriminating between cardiac and non-cardiac dyspnoea

Cardiac Markers in the Management of Artery Disease and Acute Coronary Syndrome

Cardiac Markers in Risk Stratification of Kidney Disease
Cardiac Markers and Chemotherapy of Cancer

Primary care setting

35. Fuat A. et. al.: A comparison of the two commercially available assays for B-type natriuretacpeptide when selecting patients with suspected heart failure in primary care. Which should we use? Heart 2003;89(Suppl 1);A38

36. Citation: European Journal of Heart Failure Supplements 2003; Vol. 2(1): 131.

38. Tschoepe C. et. al.: The role of NT-proBNP in the diagnostics of isolated diastolic dysfunction: correlation with echocardiographic and invasive measurements.

40. Dao Q et al. Utility of B-Type Natriuretic Peptide in the Diagnosis of Congestive Heart Failure in an Urgent-Care Setting. JACC 2001, 37/2: 379-385

Emergency room setting

43. Bayés-Genís A. et al. N-terminal probrain natriuretic peptide (NT-proBNP) in the emergency diagnosis and in-hospital monitoring of patients with dysnpoea and ventricular dysfunction. Eur Heart J 2004;6;301-308

44. McCullough P et al., B-Type Natriuretic Peptide and Clinical Judgment in Emergency Diagnosis of Heart Failure. Circulation 2002;106:r1-r7
List of References

Natriuretic peptide levels correlate with the severity of the disease

Prognostic value

51. De Sutter J, de Bacquer D, Cuypers S, Delanghe J, De Buyzere M, Kornitzer M, de
List of References

Monitoring of treatment / Treatment guidance

Websites

63. Fédération française de cardiologie : www.fedecardio.org
64. American college of cardiology: www.acc.org
65. European society of cardiology: www.escardio.org
66. British heart foundation statistics website: www.heartstats.org
67. American Heart Association: www.americanheart.org
68. Lab Tests Online: www.labtestsonline.co.uk
69. Medical Lab: www.medical-lab.info

This paper has been prepared by the EDMA Value of IVDs Task Force.
EDMA, the European Diagnostic Manufacturers Association is the voice of the In Vitro diagnostic industry active in Europe. EDMA membership brings together National Associations and the major companies, representing in total more than 500 companies (or over 700 legal entities) engaged in the research, development, manufacture or distribution of IVD products. EDMA cooperates with other European and international trade associations as well as with scientific societies and patients organisations, to make a real difference in health and life quality.